summaryrefslogtreecommitdiff
path: root/_posts/2016-01-01-another-test-markdown.md
blob: 64d8a35cc6566c103f3f3f38ecc5be2a847288c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
---
layout: post
title: Another test markdown
subtitle: Each post also has a subtitle
categories: markdown
tags: [test]
---

Put the math expression within <span>$</span>...\$:

\\(\LaTeX{}\\)

$\Pi$

$ a * b = c ^ b $

$ 2^{\frac{n-1}{3}} $

$ \int\_a^b f(x)\,dx. $

\\( \int\_a^b f(x)\,dx. \\)

$ \rho {\rm{FOD}} = \sum\limits{\sigma ,i} {(\delta _1 - \delta _2 n_i^\sigma )|\phi _i^\sigma ({\bf{r}})|^2} $

$$ \rho {\rm{FOD}} = \sum\limits{\sigma ,i} {(\delta _1 - \delta _2 n_i^\sigma )|\phi _i^\sigma ({\bf{r}})|^2} $$


{{ "here is a liquid filter." | capitalize }}

{% capture test %}
\`escape inline code\`  
`inline code`  
Here is a **capture block**.
{% endcapture %}

{{ test | markdownify }}

{% assign x = 100 %} {% assign x = x | divided_by: 3 %}
100 / 3 = {{ x }}

:+1:
:bolivia:

\1. 21312  
\2. 21312  
\4. 4214  

{% highlight python wl linenos %}
import networkx as nx
from collections import Counter

diagrams = defaultdict(list)
particle_counts = defaultdict(Counter)

for (a, b), neighbors in common_neighbors.items():
    # Build up the graph of connections between the
    # common neighbors of a and b.
    g = nx.Graph()
    for i in neighbors:
        for j in set(nl.point_indices[
            nl.query_point_indices == i]).intersection(neighbors):
            g.add_edge(i, j)

    # Define the identifiers for a CNA diagram:
    # The first integer is 1 if the particles are bonded, otherwise 2
    # The second integer is the number of shared neighbors
    # The third integer is the number of bonds among shared neighbors
    # The fourth integer is an index, just to ensure uniqueness of diagrams
    diagram_type = 2-int(b in nl.point_indices[nl.query_point_indices == a])
    key = (diagram_type, len(neighbors), g.number_of_edges())
    # If we've seen any neighborhood graphs with this signature,
    # we explicitly check if the two graphs are identical to
    # determine whether to save this one. Otherwise, we add
    # the new graph immediately.
    if key in diagrams:
        isomorphs = [nx.is_isomorphic(g, h) for h in diagrams[key]]
        if any(isomorphs):
            idx = isomorphs.index(True)
        else:
            diagrams[key].append(g)
            idx = diagrams[key].index(g)
    else:
        diagrams[key].append(g)
        idx = diagrams[key].index(g)
    cna_signature = key + (idx,)
    particle_counts[a].update([cna_signature])
{% endhighlight %}

|:                        |:                  :|: $$O_3 + C_2H_2 \rightarrow $$         :|||:  $$O_3 + C_2H_4 \rightarrow $$ :|||:       :| 
|:  ^^ Method            :| ^^ $$\lambda^a$$  |    vdW |    TS |    cycloadd.           |  vdW  |  TS  |  cycloadd.           | ^^ MAE    |
|-------------------------|-------------------|--------|-------|------------------------|-------|------|----------------------|-----------|
| $$\lambda$$-tPBE        |   0.20            | -0.40  | 7.69  | -68.00                 | -1.86 | 4.87 | -57.57               | 1.29      |
|-------------------------|-------------------|--------|-------|------------------------|-------|------|----------------------|-----------|
| MC1H-PBE $$^b$$         |   0.25            | -1.08  | 3.66  | -70.97                 | -1.25 | 0.13 | -61.26               | 3.35      |
|-------------------------|-------------------|--------|-------|------------------------|-------|------|----------------------|-----------|
| Reference values $$^c$$ |   ---------       | -1.90  | 7.74  | -63.80                 | -1.94 | 3.37 | -57.15               | --------- |
|=========================|===================|========|=======|========================|=======|======|======================|===========|
| $$^a$$ The optimal mixing parameter.$$\~$$ $$^b$$ From Ref. .$$\~$$  $$^c$$ Best estimates from Ref. . ||||||||


|   1   |  2     |   3   |   4   |  5   |  6   |  7  |
| spancell1     ||   spancell2  || cell | spancell3 ||
|^^ spancell1   ||   spancell2  || cell | spancell3 ||
{:class="custom-table"}

<script>
|:-----:|:-----:|:-----:|:-----:|
| (0,0) | (0,1) | (0,2) | (0,3) |
|     (1,0)    || ^^    | (1,3) |
</script>


|:-----:|:-----:|:-----:|:-----:| ---- |
| (0,0) | (0,1) | (0,2) | (0,3) |      |
|     (1,0)    || ^^    | (1,3) |      |


|:-----:|:-----:|:-----:|:-----:| ---- |
| (0,0) | (0,1) | (0,2) | (0,3) |      |
|     (1,0)           ||| (1,3)       ||


|:-----:|:-----:|:-----:|:-----:| ---- |
| (0,0) | (0,1) | (0,2) | (0,3) |      |
|     (1,0)           ||| ^^    |      |

|:-----:|:-----:|:-----:|:-----:| ---- |
| (0,0) | (0,1) | (0,2) | (0,3) |      \
|     (1,0)           ||| ^^    |      |


# Table

| Stage | Direct Products | ATP Yields |
| ----: | --------------: | ---------: |
|Glycolysis | 2 ATP                   ||
|^^         | 2 NADH      | 3--5 ATP   |
|Pyruvaye oxidation | 2 NADH | 5 ATP   |
|Citric acid cycle  | 2 ATP           ||
|^^                 | 6 NADH | 15 ATP  |
|^^                 | 2 FADH | 3 ATP   |
|                        30--32 ATP  |||


{:color-style: style="background: black;" }
{:color-style: style="color: white;" }
{:font-style: style="font-weight: 900; text-decoration: underline;" }

|:             Here's a Inline Attribute Lists example                 :||||
| ------- | ------------------------- | -------------------- | ----------- |
|:       :|:  <div style="color: red;"> &lt; Normal HTML Block > </div> :|||
| ^^      |   Red    {: .cls style="background: orange" }                |||
| ^^ IALs |   Green  {: #id style="background: green; color: white" }    |||
| ^^      |   Blue   {: style="background: blue; color: white" }         |||
| ^^      |   Black  {: color-style font-style}                          |||


[cell image]: https://jekyllrb.com/img/octojekyll.png "An exemplary image"

| Heading            | Column 1      | Column 2                           |
|--------------------|---------------|------------------------------------|
| Row 1              | Apple[^1]     | Orange                             |
| Row 2 (merged)     | Blueberry     | Strawberry                         |
| ^^         | [Plum](https://example.com) | Raspberry ![example][cell image]   |

[^1]: Footnote

Not in table: `<Mail Gateway>`

In table:

Decision Point | Design Decision
--- | ---
Authoritative DNS MX Record | `<Mail Gateway>`

9 \* 9

| 1 \* 1 = 1 |
| 1 \* 2 = 2 | 2 \* 2 = 4 |
| 1 \* 3 = 3 | 2 \* 3 = 6 | 3 \* 3 = 9  |
| 1 \* 3 = 3 | 2 \* 3 = 6 | 3 \* 4 = 12 | 4 \* 4 = 16 |

# Emoji
:+1:

# Mathjax

$\LaTeX{}$

# PlantUML

@startuml
Bob -> Alice : hello
@enduml

# Video

![](//www.youtube.com/watch?v=Ptk_1Dc2iPY)

![](https://avatars3.githubusercontent.com/hubot?v=3&amp;s=40)

[\[video link\]](//www.youtube.com/watch?v=Ptk_1Dc2iPY)


# Special media links

![]( {{ "/assets/devstories.webm" | relative_url }} )

[![w:1100](https://i.imgur.com/bc9HOJU.png)](https://www.youtube.com/watch?v=kCHGDRHZ4eU)

Tips:
* Use pipes {% raw %}(`|`){% endraw %} to delineate columns, and dashes to delineate the header row from the rest of the table.
* Spacing doesn't matter to the markdown processor, any extra white space is removed, but it can really help with readability.
The two markdown examples below both create this table.

Use pipes `{% raw %}(`|`){% endraw %}` to delineate columns, and dashes to delineate the header row from the rest of the table.